Jump to content


Recommended Posts

Posted (edited)

Most of you probably know about the difference between 421 and 41 exhaust manifold differences, but do you know this? This article is quite useful if you are considering changing header configuration

The Mazda Skyactiv engine produces the highest compression ratio of 14:1, one of the design is using 4-2-1 exhaust mainfold instead of 4-1, the explanation is quite interesting

SkyActiv_2.jpg

Surprisingly, Mazda uses a very conventional approach to do that: a long, 4-to-2-to-1 exhaust manifold. On a typical inline-4 cylinder engine with short, 4-to-1 exhaust manifolds (the first picture), once the exhaust valve of Cylinder 3 opens, its exhaust pressure waves (grey area) flows through the short manifolds to the exhaust valve of Cylinder 1, which is at the end of its exhaust phase. This pumps some exhaust gas back into Cylinder 1 and becomes residual exhaust gas. When the engine is running at low speed (2000 rpm in the first picture), the exhaust pressure wave arrives Cylinder 1 early enough to cause high percentage of residual exhaust gas. As engine rev rises, the opening and closing of valves speeds up as well, thus the exhaust pressure waves of Cylinder 3 reaches Cylinder 1 at later stage, causing lower percentage of residual exhaust gas. In short, from low to mid-range engine speed the level of residual exhaust gas is pretty high for this engine configuration.

In the case of Skyactiv-G's 4-2-1 exhaust manifolds (the second picture above), exhaust pressure waves from Cylinder 3 has to travel a long way to reach Cylinder 1, by the time Cylinder 1 has already, or nearly completed its exhaust phase. Therefore the level of residual exhaust gas is much lower than the previous case, especially for low to mid-range rpm. As a result, the Skyactiv-G engine attains lower temperature in its combustion chambers and allows a higher compression ratio to be used.

Well, if the principle is so simple, why not others discovered already? It's not that simple, of course. One critical drawback of the long 4-2-1 exhaust manifold is that it takes relatively long time to heat up the NOx catalyst during cold start. In fact, this is exactly the reason why most modern production engines have abandoned this exhaust configuration - with the exception of high-performance engines which may use thin-wall fabricated stainless steel exhaust manifolds to compensate for its extra length. On cost-conscious mass production engines, cheap cast-iron exhaust manifolds are still the norm. Its extra mass and surface area absorb a great deal of heat and delay the proper functioning of catalyst. This causes difficulty to comply with emission regulations.

Article in

http://www.autozine.org/technical_school/engine/Ignition_Compression.html#Skyactiv-G

That also means that my car might not be able to pass emission test!!

and I understand why my header is designed like this, the distance travelling in cyclinder 3 to cyclinder 1 is much more longer, producing less residual exhaust gas

WeaponR.jpg

Edited by ben yip

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Join The Club

    Join the Toyota Owners Club and be part of the Community. It's FREE!

  • Latest Postings

    1. 18

      High idling on the 2zzge even when warm (solved!)

    2. 5

      High RPM Idle after the engine warm up.

    3. 0

      Tow bar

    4. 3

      Disconnecting winch, lightbar and UHF

    5. 0

      2011 Land Cruiser 1VD-FTV Engine Won't Start After Overhaul

    6. 3

      Disconnecting winch, lightbar and UHF

    7. 3

      Disconnecting winch, lightbar and UHF

    8. 3

      Disconnecting winch, lightbar and UHF

    9. 1

      Snapping wheel and axle studs

    10. 0

      2zz idle / roughness when accelerating past 3k

×
×
  • Create New...

Forums


News


Membership